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Abstract. By making use of the generalized multipolar gauge it is proved that the matrix elements
of the magnetic moment operator are independent of gauge origin for electromagnetic fields that
are non-uniform in space and non-constant in time.

1. Introduction

In 1932 Van Vleck asserted, but did not prove fully, that the sum of the orbital paramagnetic
and diamagnetic susceptibilities of an atom or molecule was independent of the origin of the
vector potential used to describe the magnetic field. This contention, in its most general form
to be discussed, might be called the fundamental theorem of magnetism since if it were not
true the theory of magnetism, and much else, would be untenable.

Van Vleck took the diamagnetic susceptibility to be proportional to〈r2〉 and the
paramagnetic term to〈r x p〉 and stated that when quantum conditions and commutation
rules were used the susceptibility was found to be independent of gauge origin, but he did
not provide a complete derivation of this. Of the proofs of Van Vleck’s contention that
have been offered since, Griffith (1961) claimed that in the Coulomb gauge and with zero
scalar potential the energy to second order in perturbation theory did not depend on the gauge
function adopted for any general vector potential. Friar and Fallieros (1981) derived the same
result for the uniform gauge (see later) using perturbation theory and showed that the total
susceptibility was gauge invariant for spherical systems when the magnetic moment operator
was taken to ber x (p − eA)e/2m. They noted that the discussion was more involved for
off-diagonal matrix elements of non-spherical systems. They also used the requirement of
gauge invariance to obtain sum rules from perturbation theory. Geersten (1989) showed that
the total susceptibility was independent of gauge origin using the theory of the polarization
propagator but that this could be violated in numerical calculations if a restricted set of basis
states was used. All these derivations only applied to the linear response (the susceptibility)
and relied on perturbation theory or had other limitations. Recently (Stewart 1996a, 1997) a
proof was given that applies to the magnetic moment itself (i.e. the full nonlinear response to
a magnetic field) and essentially involves operators alone and is independent of any particular
set of basis states.

However, all the proofs mentioned above used the symmetric uniform gauge with vector
potentialA = B0 x r/2, whereB0 is a vector that does not depend on the spacer and time
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t coordinates. The scalar potentialφ is independent of time. From the relations that give the
fields in terms of the potentials

B(r, t) = ∇ x A(r, t) and E(r, t) = −∇φ(r, t)− ∂A(r, t)/∂t (1)

where∇ is the gradient operator with respect tor, it follows that in this gaugeB(r, t) = B0

andE(r, t) = −∇φ(r), both fields being independent of time andB being uniform in space.
The purpose of this paper is to extend the proof of Van Vleck’s contention to the most

general situation in which the atomic or molecular system is subjected to fields that vary both
in space and time and moreover provide a proof that applies to the matrix elements as well as
to the expectation value. In section 2 it is shown that in the generalized multipole gauge, as in
the uniform gauge, a shift of the origin of the potentials corresponds to a gauge transformation.
In section 3 it is shown how this leads to the general proof of Van Vleck’s contention and in
the appendix an algebraic result needed for the analysis of the generalized multipolar gauge is
obtained.

2. Generalized multipolar gauge

The generalized multipolar gauge is obtained by making the gauge transformation

A(r, t) = A′(r, t) +∇3(r, t) and φ(r, t) = φ′(r, t)− ∂3/∂t (2)

from any gaugeA′ andφ′ to the new gaugeA andφ using the gauge function

3(r, t) = 3(R, t)−
∫ 1

0
du (r −R) ·A′(q(u), t) (3)

where

q = ur + (1− u)R (4)

with

∂3(R, t)/∂t = φ′(R, t) (5)

the integral being carried out along the lineAB in figure 1. This gauge function is obtained by
requiringA to be perpendicular to the line(r −R) at every point on that line which implies∫ 1

0
du (r −R) ·A(q) = 0. (6)

Equation (3) is obtained from equation (6) noting that∇q3(q) = ∇3(q)/u, where∇q is the
gradient with respect toq and∇ is the gradient with respect tor.

The four-vector version of the multipolar gauge was introduced by Valatin (1954) and
its three-vector version, which we use here, was suggested later by Woolley (1973, 1974).
Skagerstam (1983) has discussed the relation between the three- and four-vector versions. An
analysis of the three-vector version was given by Kobe (1982) for theR = 0 form only. We
sketch the derivation of the three-vector version for non-zeroR as it is needed for what follows.

Following the methods of Kobe (1982) we first obtainA(r) by taking the gradient of the
gauge function in equation (3). Henceforth we omit the time argumentt , as it is the same in all
the potentials and fields. There are four terms arising from∇3. One of them vanishes from
∇ x r = 0. Two others, using the result(r−R) ·∇f (q) = u(∂f/∂u) derived in the appendix,
come to−∂/∂u(uA′) whose integral cancelsA′ in equation (2). The remaining term, using
the relation∇ x A(q) = uB(q), comes to

A(r,R) = −(r −R) x

∫ 1

0
u duB(q). (7)
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Figure 1. VectorsR, r andδr in three-dimensional space.O is the coordinate origin,δr is not in
general coplanar withr andR. Whenr is changed byδr the area of triangleOAB is increased
by triangleABC and decreased by triangleOBC. The dimensions of the area elements are shown
on the diagram. The position of the area element in triangleABC is q, given by equation (4). The
area element in triangleOBC is atvr where 1> v > 0.

A(r,R) has the property that at every pointr it is perpendicular to the vector(r −R).
The scalar potential is obtained from equation (2) by noting that∂A′(q)/∂t = −E(q)−

∇φ′(q)/u. Using the result in the appendix, the second term gives rise to−∂/∂u{φ′(q)}whose
integral cancelsφ′, giving, with equation (5), the scalar potential

φ(r,R) = −(r −R) ·
∫ 1

0
duE(q) (8)

so all the components of the potential are zero atr = R.
Equations (7) and (8) constitute the generalized multipolar gauge. Next we verify that

operating on the potentials (7) and (8) with equations (1) recovers the fieldsB(r, t)andE(r, t).
The curl of equation (7) has four terms. One is zero from∇ ·B = 0. The other three come
to ∂/∂u{u2B(q)} whose integral isB(r) as required. The electric fieldE(r) is obtained from
equations (1), (7) and (8) by noting that∂B(q)/∂t = −∇ x E(q)/u. The remaining terms of
the integrand come to∂/∂u{uE(q)} whose integral isE(r). NeitherE(r) norB(r) involve
R, so its presence inA andφ indicates that a gauge freedom associated withR exists in these
potentials. If theB field happens to be uniform in space then the integral overu may be
performed trivially and the symmetric uniform gauge is obtained withA = B0 x (r −R)/2.
In the symmetric uniform gaugeR corresponds to a change of the origin of the potentials and
is associated with a gauge transformation with gauge function−r · (B0 x R)/2, andR will
be found to play a similar role in the generalized multipolar gauge.

The multipolar gauge was given this name by Kobe (1982) because if the fields are
expanded about the pointR using the relationE(R + y) = exp(y · ∇)E(R), where the
spatial derivatives are evaluated at the pointR, then the integrals overu may be performed
trivially and the potentials may be expressed, expanding as far as the quadrupole terms, as

φ = −(r −R) ·E(R)−6ij (xi −Xi)(xj −Xj)(∂Ei/∂xj )/2 + · · · (9)

Ak(r) = −(r −R) x B(R)|k/2−6ijlεijk(xi −Xi)(x1−X1)(∂Bj/∂x1)/3 + · · · (10)

whereεijk is the antisymmetric unit tensor and the derivatives are evaluated atR.
Although the simple (withR = 0) and generalized multipolar gauges do not in general

satisfy the Coulomb gauge condition∇ · A = 0, their multipole expansions up to but not
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including the magnetic quadrupole term do, which makes them convenient for use in many
atomic spectroscopy calculations.

Can the gauge freedom implied byR be expressed in the form of a gauge transformation

A(r,R) = A(r, 0) +∇χ(r,R) (11)

whereχ is a gauge function and if so what is it? To answer this question we consider the
magnetic flux8(r,R) that is linked with the triangleOAB of figure 1 formed by the vectors
r andR. Let r vary by a small vectorδr; this latter vector is not necessarily coplanar withR
andr. As a result the flux linked with the triangle changes by an amountδ8. This quantity is
equal to the flux linked with the triangleABC minus that linked with the triangleOBC.

First we calculate the flux linked withABC. The vector element of the area at pointq on
lineAB is uδr x (r −R)δu and the fluxδ81 linking this area isB(q) · δr x (r −R)uδu or
(r −R) x B(q) · δruδu. The integral of this overu is seen from equation (7) to be the scalar
product of the vector potential of equation (7) withδr, namelyδ81 = A(r,R) ·δr. From this
must be subtracted the fluxδ82 linking the triangleOBC. The area element here is−rx δrvδv
which leads to a fluxδ82 = A(r, 0) · δr soδ8 = δ81 + δ82 = δr · {A(r,R) −A(r, 0)}.
Accordingly

A(r,R)−A(r, 0) = ∇8(r,R) (12)

soχ(r,R) = 8(r,R) and we find that the gauge function for this transformation is equal to
the magnetic flux linked with triangleOAB. This is consistent with the uniform gauge where
the corresponding gauge function is−r · (B0 x R)/2 orB0 · (r x R)/2, the scalar product
of the uniformB field and the area. We have therefore shown that changing the originR of
the potentials in the generalized multipolar gauge, just as in the uniform gauge, amounts to
making a gauge transformation. It is to be noted that the arguments given above apply as much
to time-dependent fields and potentials as to time-independent ones.

3. Gauge invariance of the magnetic moment

The classical expression for the orbital magnetic momentm about the pointR′ of a particle
of chargee at positionr ism = (r−R′) x ve/2. Because we deal with a physical system of
finite extent, such as an atom or molecule the drift velocity, the expectation value ofv, is zero
and consequently the expectation value ofm is independent ofR′. The quantum mechanical
operator identified with the particle velocity isv = dr/dt = [r, H ]/ih̄ whereH is the
Hamiltonian. By commutingr with the non-relativistic HamiltonianH = (p−eA)2/2m+eφ
the velocity operatorv is given bymv = p − eA. If other terms involvingp are present
in the Hamiltonian the commutator of them withr will contribute further to the velocity
operator. For example, the spin–orbit interactions x E · (p − eA)eh̄/4m2c (Frohlich and
Studer 1993) will add a terms x Eeh̄/4m2c to v and so add a manifestly gauge invariant
term [s{(r − R′) · E} − E{(r − R′) · s}]e2h̄/8m2c to the magnetic moment. If the Dirac
Hamiltonian is used thenv = cα, whereα is the Dirac operator and gauge is not involved at
all. The operator for the orbital moment in the non-relativistic case is therefore composed of
two termsm =mp +md , where the paramagnetic moment ismp = (r −R′) x pe/2m and
the diamagnetic moment ismd = −(r −R′) x Ae2/2m.

Now let us make a gauge transformation to a new gauge described by a gauge function
χ(r, t). The electromagnetic potentials are transformed according to equation (2) but the
wavefunction9 of the particle is transformed according to

90(r, t)→ 9χ(r, t) = 90(r, t)exp{ieχ(r, t)/h̄}. (13)
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By doing this the Schr̈odinger equation

{(p− eA)2/2m + eφ}9(r, t) = ih̄(∂/∂t)9(r, t) (14)

remains invariant in form under the gauge transformation (Stewart 1996b, 1997).
Under this transformation the operatormd becomesmd

χ = −(r−R′) x (A+∇χ)e2/4m
andmp

χ =mp since in the Schr̈odinger representation the operatorp = −ih̄∇ is independent
of gauge. However, the wavefunction changes according to equation (13). When the effect
of the operatorp = −ih̄∇ acting on the transformed wavefunction is allowed for, the matrix
elements between particle states9 ′ and9 ofmp andmd in the new gauge are found to be

〈9 ′χ |md
χ |9χ 〉 = −(e2/2m)〈9 ′0|(r −R′) x A(r, 0)|90〉 − (e2/2m)〈9 ′0|(r −R′) x ∇χ |90〉

(15a)

〈9 ′χ |mp
χ |9χ 〉 = (e/2m)〈9 ′0|(r −R′) x p|90〉 + (e2/2m)〈9 ′0|(r −R′) x ∇χ |90〉. (15b)

It is seen that under any gauge transformation the matrix elements of the paramagnetic and
diamagnetic moments are changed by equal and opposite amounts. The sum of the two is
independent of gauge. Since, as shown in section 2, a change of origin of the vector potential
of the generalized multipolar gauge is equivalent to making a gauge transformation it is thereby
proved that the matrix elements of the total orbital moment are independent of the origin of
the vector potential even when the fields are time dependent and non-uniform. The same is
true for the expectation value thereby proving Van Vleck’s contention in its fullest generality.

Although this achieves the object of the paper some simplification is still possible. A
preferred coordinate system may be obtained by choosing the origin of coordinatesr to be
such that〈90|A(r, 0)|90〉 = 0 or∫

9∗0(r)A(r, 0)90 dr = 0. (16)

For the uniform gauge this results in the centre of charge〈90|r|90〉 being at the origin
(Stewart 1996a) but this is not necessarily the case when the fields are non-uniform. Because
the drift velocity is zero it follows that in the gaugeA(r, 0) with this coordinate system
〈90|p|90〉 is zero too. Accordingly〈90|mp

0 |90〉 = (e/2m)〈90|r x p|90〉 and〈90|md
0|90〉 =

−(e2/2m)〈90|r xA(r, 0)|90〉 so in this coordinate system the paramagnetic and diamagnetic
terms individually are independent ofR′ the origin of the orbital angular momentum. In this
case the diamagnetic moment in a non-uniform field may be expressed explicitly as

〈90|md
0|90〉 = e2

2m
〈90|r x

{
r x

∫ 1

0
u duB(ur)

}
|90〉. (17)

Appendix

We wish to show that(r − R) · ∇f (q) = u(∂f/∂u) where∇ is the gradient operator with
respect tor, q is given by equation (4) andf is any function of the vectorq.

Noting from equation (4) that∂qi/∂xj = uδij , ∂qi/∂Xj = −uδij and∂qi/∂u = (xi−Xi)
we find that∂f/∂xi = u(∂f/∂qi), ∂f/∂Xi = −u(∂f/∂qi)and∂f/∂u = 6i(xi−Xi)(∂f/∂qi).
Accordingly u∂f (qj )/∂u = 6iu(x

i − Xi)(∂f/∂qi). Next (r − R) · ∇f (q) = 6i(x
i −

Xi)(∂/∂xi)f (qj ) = 6iu(xi −Xi)(∂f/∂qi) and the result is proved.
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